X-ray Spectroscopy of Cataclysmic Variables from Chandra HETG to Astro-E2 XRS

Koji Mukai NASA/GSFC and USRA

Mukai, Kinkhabwala, Peterson, Kahn & Paerels (2003, ApJLett 586, L77) found that *Chandra* HETG spectra of cataclysmic variables can be divided into two distinct types.

Cooling Flow CVs

Advection-Dominated Region

Figure 1 of Popham (1999, MNRAS 308, 979), showing boundary layer solutions from Narayan & Popham (1993, Nature 362, 820) for $10^{-9.5}$ M_{\odot} yr⁻¹ (dashed) and $10^{-10.5}$ M_{\odot} yr⁻¹ (solid).

The Cooling Flow emission comes from the extreme left of this graph where lines are vertical. There is a much larger region which is hot but radiatively inefficient, adding a small amount of high temperature emission.

Photoionized CVs

What is the origin of the hard, power-law like continuum in these CVs?

Intrinsic Absorption

A simple absorption (red) will not create a hard power-law from bremsstrahlung continuum.

Partial covering fraction models (1 ore 2 components) are adequate for CCD-resolution spectra, but do not appear to work for *Chandra* HETG data.

Geometry of Absorption in the Pre-Shock Flow

In reality, we expect a continuous distribution of $N_{\rm H}$ from 0 to a very high value in magnetic CVs. What would result from a continuous, rather than discrete, distribution of absorbers?

Analytical Approximation

Done & Magdziarz (1998, MNRAS 298, 737) considered a power-law distribution of covering fraction with column $C_f(N_H) \propto N_H^{\beta}$. Their equation (1) reads:

$$S(E) = S_{\text{int}}(E)A \int_{N_{H\,min}}^{N_{H,max}} N_H^{\beta} \exp\left(-N_H \sigma(E)\right) dN_H \tag{1}$$

This has been implemented numerically as xspec model, pwab. Analytically, we obtain, using $u = N_H \sigma(E)$:

$$T(E) \propto \sigma(E)^{-\beta - 1} \int_{u_{min}}^{u_{max}} u^{\beta} \exp(-u) du$$
 (2)

for the transmission T(E). The integral can be expressed in terms of incomplete gamma function $P(a,x)=1/\Gamma(a)\int_0^x t^{a-1}\exp{(-t)}dt$ so that

$$T(E) \propto \sigma(E)^{-\beta - 1} [P(\beta + 1, u_{max}) - P(\beta + 1, u_{min})]$$
(3)

If $N_{H,min}$ is sufficiently small and $N_{H,max}$ is sufficiently large, there is a range of E such that $P(\beta+1,u_{max})\sim 1$ and $P(\beta+1,u_{min})\sim 0$, so that

$$T(E) \propto \sigma(E)^{-\beta - 1}$$
 (4)

At the same time, $\sigma(E)$ itself can be approximated by a power law of E. For example,

$$\sigma(E) = 2.242 \times 10^{-22} (E/1keV)^{-8/3} cm^{-2}$$
 (5)

is a good approximation of the Morrison & McCammon cross section.

Thus, T(E) can be approximated as a power-law of E between $\ensuremath{\mathsf{O}}$ and $\ensuremath{\mathsf{Fe}}$ edges.

Power-law Cut-off

Numerical integration using pwab model in xspec are shown on left. They do indeed result in a power-law, rather than exponential, cut-off.

In this particular simulations, two different values of $N_{H,max}$ were used with the same β . Note that there is no hardness modulation below \sim 5 keV. Both the Fe K and O K edges are prominent; however, the former is not strong enough to be detected in *Chandra* HETG data.

Prospects for Astro-E2 observations

For pure Cooling Flow systems, *Astro-E2* observations will:

- Measure the densities using He-like triplets of Si, S, and Fe.
- Measure the departure from a pure Cooling Flow, allowing inferences to be made on the advection-dominated region.

For Photoionized systems, Astro-E2 observations will:

- Test if the underlying the continuum is due to Cooling Flow emission.
 - Confront the prediction of power-law like absorption.
 - Detect Fe K and O K edges exist simultaneously, perhaps also weaker edges of intermediate elements.
- Measure the ionization structure of the complex absorber.
- Measure the parameters of the Cooling Flow.

In general, we cannot rely on exponential cut-off to identify intrinsic absorption (and in the total spectrum of an ensemble of variously absorbed sources, such as the Cosmic X-ray Background).